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IX. On the Vibrations of a Vortex Ring, and the Action upon each other of Two Vortices
wn a Perfect Fluid.

By J. J. TrOMSON, B.A., Fellow of Trinity College, Cambridge.
Communicated by Lord RavreicH, F.R.S.

Received November 16,—Read December 8, 1881.*

TaE following paper contains (1) a discussion of the vibrations which take place in the
axis of the core of a vortex ring whose section is very small in comparison with its
aperture when the axis is made to deviate slightly from the circular form; and (2) a
discussion of the action upon each other of two vortex rings which move in such a
way that they never approach nearer than a large multiple of the diameter of either.

The fluid in which these vortices exist is supposed to be frictionless and incom-
pressible. ' v

The method which I have employed is the same in both cases, and is purely kine-
matical. It is merely the application of the fact that if F(x, v, 2, t)=0 be any
equation to a surface which always consists of the same particles then

ar
dt

d¥ = dF dF
+u zf:-{—v @-l—w d—z-—O

where u, v, w are the velocities of the particle at (z, ¥, ) along the axis of x, y, %
respectively, and where the differential coefficients are partial.

The surface of a vortex ring is evidently a surface of this kind, and the equation
just written is the condition that F(wx, v, 2, t)=0 should be the equation to the surface
of a vortex ring. I have found that this condition, joined to the ordinary expressions
for the velocity due to a vortex element, is sufficient to solve the problems discussed
in this paper. This is an instance of the large number of problems in vortex motion
which are capable of purely kinematical solution ; indeed, a vortex theory of gases
would be entirely kinematical so long as we only considered the molecules of gas
themselves and not their effects upon the containing vessel, &c. For example, in this
theory when two atoms clash, the problem of finding their subsequent motion must be
capable of solution by purely kinematical considerations, but in the ordinary theory of

* Since the paper was sent into the Society it has been copied by the author with changes in the
notation, introduced chiefly to facilitate the printing, but no change of any importance has been intro-
duced into the substance of the paper,
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494 MR. J. J. THOMSON ON THE VIBRATIONS OF A VORTEX RING,

gases the “clash of atoms” involves dynamical considerations of very considerable
complexity. This is a consequence of the vortex theory being of a much more funda-
mental character than the ordinary one that atoms consist of small pieces of solid
matter.

Problem I. To find the vibrations of the circular axis of a vortex ring.

Using cylindrical coordinates let the equations to the axis of the core be

p=a-+3e, cos nd
z= 343, cos nd

where «, and B, are small compared with ¢ the radius of the core when undisturbed ;
the summation over all integer values of n between zero and infinity. The axis of # is
perpendicular to the plane of the vortex, and 6 is measured from the axis of = as
initial line.

The velocity due to a distribution of vortices is proportional to the magnetic force
produced by a system of currents arranged in exactly the same way as the vortices
and of the same strength.

Now the vortex filaments we are considering are distributed uniformly (or very
approximately so)* in a ring the radius of whose transverse section is very small in
comparison with the radius of the aperture. Now if electric currents flow uniformly
through a conductor of such a shape the magnetic action at a point outside or on the
surface of the conductor is the same as if all the currents were condensed into one
flowing along the axis.t Hence when finding the velocities outside the vortex ring
we may suppose the vortices condensed into one at the axis of the core. If w be the
angular velocity of molecular rotation, e the radius of the transverse section of the
core, then me’w is the strength of the vortex which we must suppose placed at the
axis of the core. We shall for brevity denote mc’w by m.

The components (u, v, w) of the velocity at the point (, y, #) are given by

m (Y1 (d,, ', /
24:*!0773{&;(11/ —y)-—ds, (2 —z)}ds

2

_.__/"L Sll d_w, 4 _di/ 4 ’
Y= om .{0 T3{ds’ ( —z)_ds/ (x —w)}ols

m (¢1 [dy d ,
w=gf {glg (@' —a)— =y —?/)}ds

0?

where 7 is the distance of the point (x, y, z) from the point (&, ¥, #'), a point on the
vortex whose polar coordinates are (p’, 6); & is an arc of the vortex ring.

* See a note by Sir W. TromsoN at the end of Hrrmmourz’s paper on “ Vortex Motion,” Phil. Mag.,
1867. .
+ Maxwerny’s ¢ Electricity and Magnetism,” 2nd edition, §. 683.
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Now from the equation to the axis of the vortex we have

da’=d(p’ cos 0)=d0%(—ne, sin nf cos §—a sin 0 —a, cos nf sin )
dy' =d(p’ sin §)=d 05 (—na, sin nd cos 0+ a cos 4w, cos n6 cos 0)
dz' = —d0%(nB, sin nb)

neglecting «,* and B,?
ds'=df(a+Se, cos nb)

and

. 1 R
~—=— sin 6’—-; Sna, cos 0 sin 10

) 1 . .
-2 — cos f—~ Sna, sin @ sin nbd
ds a

az'

Y 1 .
= SnB, sin 16

If p, 4, 3+ be the cylindrical coordinates of the point , ¥, #

7= p*~+p"*+({—3B, cos n)*—2pp’ cos (§—1)
say
7%= p?+p+{*—2pp’ cos (0—1))
Let
1

{0+ p"+ &' —2pp cos (0—)}*

=Cy+C, cos (0—¢)+ ... C, cos n(d—1y)

where the C'’s are functions of p, p’, and {'.

Since p” and {" are functions of 6, C,, C,, ... C, will be functions of 6, but since 6
only enters into p’ and ¢’ in the form a, cos nf, B, cos nf, the terms in the (s which
involve & will be multiplied by a, or B, and so will be small.

If

{a2+p2+§2_2lap - (0—\{»)}%:A0+A1 cos (0—)+ ... A, cosn (f—1)

then
. dA,
N “ULlm
(/m‘—Am I“EO‘” COS nﬁ da

dA,
+25, cos nd e

+ terms of higher dimensions in &, and ,.

We shall only require those expressions for a point nearly in the plane of the vortex
where { is very small, so that in this case

CI}L=A7)Z+20L;; COS %0

MDCCCLXXXII. 38

dA,,
da
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We can determine the components of the velocity in terms of the quantities we
have denoted by A, . .. A,, we shall for the sake of clearness divide the determination
up into several steps.

To determine the parts of w, v, w independent of @, and B, in which we shall not
suppose { smail,

”=§“ rﬂcos OL{ A+ A, cos (0—y)+ . . . A, cos n(0—)}add
T Jo

ma

== j A, cos? O cos pdO=%malA cosys . . . . . . . . . . . . . (1)
v:%br— r"sin 0U(Ag+ A, cos (=) + . . adf=LmalA singy . . . . . . . (2)
2m Jo

'w:»f—»- J' {cos B(a cos 0—p cos )+ sin O (a sin —p sin )} (Ag+ A, cos 0—y+. .. Yadl

hma

=2 [ famp o0s (=)} (At A, 08 (—9)+ . . )0

__ma
T 27

=lma{2A0—Ap} . . . . . L e s (3)

——(Aga2m—A pm)

These are the velocities due to the undisturbed vortex, and in using them in the
second half of the paper we require A, A, determined without supposing { to be

small.
2nd. The values of u, v, w arising from small terms in ds’.
As far as now concerned,

ds’=d0ba, cos nb
u=0, v=0 because they involve {a,.
W=, %ﬁ (a4p cos (0—y))[Ag+A, cos (0—y)+ . . . ], cos nfdd

f [aA, cos n(0—y)—1pA,,; cos n(0—y)—LpA,_, cos n(0—ys)]e, cos ndf

e oA, —~Ep(A, HA,_)] cos na
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3rd. Small terms in 30&,, % ((%;
m [ 72,8,1 .
= 2—7J —-="gin nf(a sin §—p sin Y)[ A,+ A, cos (0—P)+ . . . Jadd

ma [

=§7—J0 —%u,&,(cos (n+1)0— cos (n—1)6) -I—ﬁgfp sin  sin nd[Ay+A, cos (—1) ]d0
=3ma{nB.(A,q cos (n41)p—A,_, cos (n—1) -I-@-@Z’ sin ¢ sin nPA,

a P |
=21man n{cos (n+1)v,b< 11— pA”>—— cos (n— 1)¢<Aﬂ_1—£An>}

fv—gi[ nB3, sin n6(a cos 0—p cos Y)[ Ag+A, cos (0—P)— Jadd

=1lman ﬂ{sin (n+1)z,b<A,,+1—— A >+ sin (71—1)¢< el ::An>}

2w e,
wzvz;[ { ——"sin @ sin nf(a cos §—p cos )
-|—~~- cos 6 sin nf(a sin 0—p sin ) } (Ay+ A, cos (§—yp)—)add

_____2_17_2_7’-”“42 {%p cos ¥ (cos (n—l)ﬁ— cos (n-+41)6)
—2psin ¢ (sin (n4-1)0+ sin (n—1)8)(A,+A, cos (0—))adb}

=4mna,[4p cos Y(A,_; cos (n—1)p—A, ., cos (n+1)¢)
—Lpsin (A, sin (n4+1)p+A,_; sin (n—1))]

=1imno,p(Au_;—A, ) cos n.

4th. Small terms in o' —zx, ' —.

u=—£_[ a cos 0 cos nOB(Ay+A; cos (6—¢)+ ... )do

ma

=— } 18,{cos (n—1)0+ cos (n+1)0} (Ag+ A, cos (0—)+ . . . )do

2T
=—1maB,(A,_; cos (n—1)Y+ A, cos (n+1)y)

v:z_ﬁr"_a sin @ cos n0B,(Ay+ A cos {§—¢)+ . . . )db
0

=1maB,(A,_; sin (n—1)Y—A, ., sin (n+1)p)

w—-—f (cos B(e, cos n cos 8)+ sin O, cos nf sin 6)} (Ag+A, cos (0—1))add

m (&
—ZJ o, cos nB(A,+ A, cos (0—y)+ . .. )add

=3}mae, A, cos ny,

co
22}
3]
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5th. Small terms arising from C, containing cos nfl. These are

=0, v=0

1

Qr
w ]’ij (a—p cos (9.*1[,))(% cos nﬁ%+ — @, COS n&%%’f‘- cos m(@—) . .. >ad9

271'0

dA, aoy [ AA dA,_
___l7 9 A . P n 741 { n—1
=3 n{a %" CO8 s 5 \ da -+ T ) €08 mp

1A, tA, dA,_
%ma,&{ cﬂ(é; - %pa<[~?7;lﬂ 4 dal> } cos .

I

Collecting the terms we find

u:"%m“{ CA; cos Y+3B,(n—1)A,y, cos (n+1)—(n-41)A,_, cos (n—1)y)
+19;n,8”A,,,—5(cos (n—1)y— cos (n—}-l)l[l)} . (4)

v:%z—ma{é'A.l sin Y 3B8.(n—1)A,.,, sin (n4 Db (n4-1)A,_, sin (n— L)h)
—1nB.A, Lsin (n4- 1)+ sin (n_14)¢)} . ()

[4

w::-%ma,{QaAo-pAl + <2a,,A,,+%a,,;p((n— DA, —(n+ l)Avn,H)) cos mfs

-I-a,,,[ag%?— P<??.Aaz-t1 +@_—;>J o8 mp} . (6)

da

da

Let the figure represent a cection of the vortex ring by a plane through its straight
axis. Let ¢ be the angle which the radius vector drawn from C the centre of the
section of the core to any point P on the surface of the ring makes with the straight
axis of the ring. Let C P=e.

Then the equations to the surface of the core are

p=a-+43a, cos mp-+e sin ¢
z=3 428, cos ni+-e cos ¢
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Since the vortex rings always consists of the same particles if F(p, 6, ¢)=0-be an

equation to its surface, we must have
dF  dR dF

+R+‘!’ ¢<I>O

when the differential coefficients are partial.

R is the velocity in the direction in which p is measured, ¥ the angular velocity
round the axis of z, and ® the angular velocity of C P round a normal to the plane
containing the axis of z and O C.

Applying this equation to the first of the equations to the core, we get

St COS mp—R—3na, sin mp.¥—-e cos .&=0
or
R:ﬁé% cos my—3Zna, sin .V -+e cos ¢.P

and in a similar way we find
w=3+43(B, cos np—nf, sin np¥)—e sin ¢.®

where w is the velocity of a point on the surface of the core parallel to the axis of .
Now ¥ is zero when @, and B, are both zero, and it will be small in this case since
a, and B, are both small, hence neglecting the squares of small quantities, these
equations become

R=3a,cos nmptecosp®. . . . . . . . . (7)

w=3+3B,cos mp—esinh® . . . . . . . . (8)
But R=w cos Y+ sin ¢ '
Substituting for « and v the values given in equations (4) and (5), we get

R=4ma{{A,+53B. cos mp((n—1)A,,, —(n+1)Awy)]

Since the A’s are multiplied by the small quantities {, @, 8,, we may suppose since
we neglect quantities of the order @,” that the A’s are found on the supposition that
‘a, and B, are zero, or that the A’s are the same as if the vortex was undisturbed.

Let us denote the value of the A’s for the undisturbed vortex by GGerman letters.

Equating the two expressions for R and putting

(=3B, cos nyp=e cos ¢
we get

Imas{(B, cos mp+e cos ¢)A,+4B, cos np((n—1)R,, 1 — (n+1)&,)}
=3, cos ny-+e cos ¢.P

equating the coefficients of cos ¢ and cos mj we get
gmaﬁl_ D . .. .9
ImaB,{ R, +3(n—1)&,, — (n+ l)ﬁn_l)}_a" e (10)
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If we equate the value of w from equation (6) to that given by equation (7)
we get .

Yo 20y —pAi+S3L.o[(1—1)Auy — (1 1) Auy ] cos

dA, dA, 1A, _
+ { 23, n+2a"l:a p( o - o l>]} cos mp)

=5—I—EB,, cos mp—e sing. P

Since the term 2aA;—pA, is not multiplied by any small quantity we cannot

suppose the A’s to have the same value as for the undisturbed vortex, we must
substitute for 2aA,—pA,

208, — a@, —a, cos YA, +a, cos m/;(%(mé’ao —af,)—esin oA,

Since the other terms are multiplied by small quantities, we may substitute for the
A’s their undisturbed values. Making these substitutions we get

_ma{ 20— o, — e sin ¢@, + e, cos mb[ (20@,—0A,)
+22an—@1—|—%((n ) n—1 (,n+1) n+1)+adgn C(z(dan Fl—l—dan‘l):l}

da da

=3—esin ¢d+3, cos mp

Equating constant terms and the coefficients of sin ¢ and cos nys, we get

%moﬂ(%’ao—ﬁl):é T
smoA, =
%—maan{d—i@ago—aﬁl)-{—ZQ,L—ﬁl-l—l((n—1)%,,,_1—(n+1)%ﬂ+1
d n da 4 d n—1 -
+a§-—l <a 1l g >}=,3,,. Y ¢ 5

The first of these equations gives the velocity of translation of an undisturbed
circular vortex ring, the second is the same as the one we previously obtained for ®.

We must now proceed to find the values of the @’s supposing the transverse
section of the vortex core to be small compared with its aperture.

Since

1
[T p+ ©—2ps cos (B—yyi— TRy cos (0= + .. . @, cos n(0—y)

%

cos ny.dy

|
A= o (@*+ p*+ &2 —2pa cos )
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except when n=0 when

_ip Y
%0—27,(0 (@ + p*+ £ —2pa cosy)t
Now
a?+p* 47— 2pa cos x=(a+p)*+ {*—4pa cos® —2X=((a+p)2+ §2)<1 — K cos? §>
where
ng__‘iﬁb._
(a+p)*+ &

Now in the case we are considering p is very nearly equal to @ and { is very small,
hence « is very nearly equal to unity

1—«? cos® %‘: K>+ Kk? sin® %f
where
2 2
oo (=T
a T lotar+ o
and is very small
1 2 cos nydy
Ther efore %3L=;S ( ( o+ P)g + Cz)%< ,clz + K2 SiHQ-zx)i
: 0

Now since «, is very small

will be very large, and the large part will arise from very small values of x, or from
values of x very nearly equal to 2w, the parts arising from small values of x and from
values near to 27 will evidently be equal; hence the integral will be approximately

€ 2.2
<1 - ?3-2%) dy

L \E
2 4 A
0 <K1 +4>

where € is large compared with «,, this integral

4(1 + 2022 < S
= ( +K1:L . )[(Klzfxey]o—Snz[log (x+ \/;12+X2)]

0
or, since e is large compared with «,;, this is approximately

L4200 g0y 2

"y ey

or retaining only the more important terms

4
=—+ 8n® log &,
1
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hence

Wlogm)—:—((a,—l—p)g—l—cz)%. L. (13)
except when n=0 and

7 __,_,__;_,_<<(¢+P)_|_g) e (1)

If we substitute these values for the @’s the equation
. %ma@l=®
gives
tma <-—~“—|— log Kl> Bat=d

or, since k, 18 apploXIm'Ltely e*/4a®, we ge’o if we substitue this value for «, and we’w

for m

w—lco—'-»-logi“ DL . . . oo (1)

The second term on the left-hand side of this equation bemg small compared with
the first, we get as a rougher approximation

w:@_...........,(lG)
The equation

YnaB R 3= )Ry — (1A} =2,

gives on substitution

———-n logm—ﬁn_ocn. e ¢ Y4

Substituting for &,, &, in equation (11) we find

g~1g~«...,......(18)

This agrees to the degree of approximation we are working to with the value for
the velocity of translation of a circular vortex found by Sir W. TaHoMsoN and given in
Professor Tarr's translation of HurMuOLTZ'S paper on “ Vortex Motion” (Phil. Mag.,
June, 1867).

The value of ¢ given by equation (16) is also the same as that obtained by Sir W
THOMSON.

Substituting for the @’s in equation (9) we ﬁnd

yoam = (G410 o Ewmiizgiiigi// ((a+pr+0) ]

2 (a—p)*+8* | » .y
(nz*l-()) log (a+p)+8/ ((a+p)2—|—§9)%}__ﬁn
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or negiecting terms on the lef't hand side which are not multiplied by the large

— D2
quantity log (T%é% = log — we find
1) 2¢
2maun 8a‘~’ og = B.
or
& 20 . .
%w(—g(nz—-l),log ?-an::ﬂﬂ e e e o (19)

Differen-iating equation (15) with respect to the time and substituting for B, from
(16) we get

< - log > (RP=1)Pa,=0a", . . . . . . . (20)

or
a,=A cos {%log?e—an.«/ng—lt+ﬁ} Coe o (2
B.=A nL_I sin {gglog ?g'n\/nz-—l.t+,8} e (22)

where A and B are arbitrary constants.

These equations show that the circular vortex ring of indefinitely small section is
stable for all displacements of its circular axis, and that the time of vibration for a
displacement expressed by

p=a-+ea, cos nd
is

27r/c~u——log—n\/nz—1 e e e (23)

If 'V be the velocity of translation of the vortex, viz.: we® log %0_0 // 2a, the time of

vibration is 27a/V.ny/n?—1.

Sir W. TroMsoN has proved that the circular vortex ring is stable for all alterations
in the shape of the cross section. If we combine this with the result just obtained we
see that the circular vortex ring is stable for all possible displacements. Sir W.
THOMSON has also proved that for a displacement of the n™ order in the shape of the
cross section of the vortex arc the time of vibration =2#/(n—1)w ; hence these vibra-
tions begin by being much quicker than those we have been considering, but since for
large values of n the latter are proportional to 7® whilst the former are only propor-
tional to n, the vibrations of a higher order will be quicker for the circular axis than
for the core. When n is very great »/7®—1=mn, thus the amplitude of a, is equal to
the amplitude of B, and &,*4B,°=A? a constant quantity ; thus each point on the arc

describes a circle about its mean position with an angular velocity we®n® log 2a/e / ot

MDCOCLXXXII, 3T
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Problem II. To find the action upon each other of two vortex rings which move so
as never to approach nearer than a large multiple of the diameter of either.

For the sake of simplicity we shall suppose that the normals to the planes of the
vortices intersect.

Fig. 2.

Let the plane of the paper contain p p” and ¢ ¢" the normals to the two vortices,
let A B be the vortex moving along p p’, C D the vortex moving along ¢ ¢".
Let the figure of the circular axis of the vortex A B be given by

p = 43w, cos nt/
7=y +32B/ cos nlf

where 2’ is measured along and p’ perpendicular to p p’. Since the vertices never
approach near to one another «,” and 8, will be small compared with «’; they will be
functions of the time which we shall have to find.

Let the figure of the circular axis of C D be given by

p=a+3Sa, cos nf
z=3% +32B, cos nt

where z and p are measured respectively along and perpendicular to ¢ ¢’. For the
same reason as before o, and B, will be small compared with a. To find how the vortex -
CD is affected by the vortex A B we shall have to find the velocities of the fluid along
z and p due to the vortex A B; in doing this we may as a first approximation assume
that the axis of A B is circular and in one plane, 7.e., we may calculate the velocities
as if &, and B,” were both zero.

Let € denote the angle between p p’ and ¢ ¢/. Let p p” be taken as the axis of 2/,
the perpendicular to p p' drawn upwards through the centre of the vortex A B, being
the axis of &

Let I, m, n be the direction cosines referred to these axes of a radius vector in the
plane of the vortex ring C D, drawn from the centre of the vortex ring and making
an angle @ with C D the intersection of the plane of the vortex ring with the plane of
the paper.

To find I, m, n through the centre of a sphere draw planes parallel to the two vortex
rings and let these be H K H’, L. K H’, the former being parallel to the ring A B and
the latter to C D, Let A G be the poles of these great circles.



AND. THE ACTION OF TWO VORTICES IN A PHRFECT FLUID. 505

Then O H, K O, O A are parallel to our axes of «’, 9/, ' vespectively. Theangle A G
or K is ¢, and if F is parallel to the radius vector above referred to, F L is equal to 6.

Then

l= cos HF= cos @ cose
m=—cos FK= —gin 0
n=" cos FA= —cosfsine

The velocity y along the axis of 2’ due to the vortex A B is by formula 8 given by
y=4m' (20" Ay—d'p’'A})

where m/ is the strength of the vortex A B

L a6

O—ZJ o (@2 pP+ 2 =20 cos O)!
A= 1 cos 0.d0

1—"57;}’ o (@4 p?+ 87 —2p/a’ cos 0

Now since the vortex rings never approach nearer than a large multiple of their
diameter, a”® will be small compared with p?4-{?, if we neglect small quantities of a
higher order than a*/p”?4{?, we find

a*(3p"* —2¢7)

1
A= 72 o 3 75 ana
ST (e
3a/p’
Al=——1
(R

Let the coordinates of the centre of the vortex ring C D be f; 0, %, then for a point
on the vortex ring
x=f+al= f+acosecosb
y=am =—qsinf
z=h4an=h<4asinecos ¢
22
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Substituting in the expressions for Ajand A,, we find on neglecting small quantities
of an order higher than a?/f?4-h?

1 a*(hsine4feos e  Ga(3/*—21%)
AO""(fQ +h2) 9 (f2+]2,2)1r+ 1 3 (f+ hz)% +% (f? e

_coseaa(hsﬁi-{;g)gose)_l_ 20156&(h?>n3£0%6)
, 3a/p"
P =Gy
. Balf? 15 @a*f? 1054 @**(h sin e+ f cos e)é 3a/a?(1—Lsinte)
S T T (e
15a v'a?f(h sin e +f cos €) + 0 {6aa’f cose 1baw "2k sin e+ f cos €>l
(P+12)f (/2412 (2412 J
105? @ Y (hsine+ feose)® 15a'a’fcose(hsinedfeose) ga'a’sin’e
-+ cos 29{ 1 P+t I (417 2 (fo+ 71,2)?}

Although for reference we give the complete values of Aj and A, to the order of
approximation we are working to, yet when we have in the expressions for the velocities
a coefficient consisting of terms of differerent orders, we shall only retain the largest
term.

If we do this we find

m/a’?

7_2(f2+h2) (2]7’ f )

m/ a'?

+2 cos 0(f2+]2) (f

*(f cos e+ 3h sin €)—2h%(2f cos e-+h sin €))

w'a'?a?

+3 cos 20(f2+h2)?{ (f'cos e+n sin €)*— —if (cos e/ sin o) +5f cos €( f cos e+ sin €)

(f*+7?)
+1 sin® ¢ f2+h9)}
From the formulee (1) and (3) we find the velocity along p’ '
=im'a' '\,
m’a’zpé"
2(p/z _|_ §’2)

Hence «, the velocity along «” at the vortex C D due to the vortex A B,

m/a’*¢'( f+a cos e cos 6)

—3 h
—9 (p/g_l_ é«/g)a
_Bwla®  fh

2 (SRR

m/aq 5fh(h sin e+ f cos €)
-+ cos 0.3 9 (m {(h CcoSs e—l-fSll'l 6)— f2+7b2 }
m/a'*a? 5 (7 sin e+f cos e)%ﬂb 5 (hcosetfsine)(hsinetfeose) | .

+ cos 260.3 it ]2),{ . Y ) +4 sin e cos e}
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In this expression for @ we have only retained the highest terms in each coefficient.

If B be the velocity parallel to the axis of %', we have

113,80 3
5 m'aag’ sin

B—'__Q (P/2+§2)%
g ma’n . _ Sak sin 6 cos 6(% sin e+ f cos €)
=3 () <h sin 6 FIEE

The velocity perpendicular to the plane of the vortex CD

=7y cos e—asine
1 _M%_s{(zm_fz) cos e—3fh sin €}
2 (f2+h2)i

+ cos 0.3 (J%g%;—)%{cos 2e( f3—4F1%)+} sin 26(7/*h—31%)}

m'a ol

+a sin @ cos @ sin e>

35f (% sin e+f cos €)?

+cos26.3
+.

) { (h sin e+f cos €)(h sin 2+ cos 2e+2f)—

/‘2,*_]?.,

|

4

(24)

The velocity along the radius vector of the vortex ring C D due to the vortex A B

=al+Bm-+tyn

=a cos € cos 0—B sin §-+7 sin € cos

or substituting for «, 8, v their values

%) 33 — 7] 2 3—41h?

=4 Gy Wb o2 O s 2 ) )

~+4 cos 0 (f?f] o ;£ (2h2—f?) sin e4-3fh cos €} > (25)
m'a?a (81 —=Tf?h) : (,__4-20_7”,2)

+2 cos 26 (i +h2‘f{ 8h—+% cos 2e *'W;;--I- sin 2 PR } J

These expressions will enable us to find the effect of one vortex on another. We
have, for example, expressed the velocity perpendicular to the plane of C D due to the
vortex ring A B in the form A+B cos +C cos 26+ . .., in Problem I. we expressed
the velocity in the same direction due to the vortex C D itself in the same form, hence
the total velocity perpendicular to C D can be expressed in this form, but by formula
(8) the velocity- perpendicular to the plane of C D is

ap,

2ol:t

cos nf
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B,
dt
plane of the vortex C D. To find 8, we must therefore express the velocity due to
the vortex A B as a function of the time. In order to make the work as simple as
possible we shall suppose that the vortices in their undisturbed states had equal
strengths and radii. In the small terms which express the velocity at the vortex C D
due to the vortex A B we may as a first approximation calculate the quantities on the
supposition that the motion is undisturbed. In order to make the expressions as
simple as possible, let us meagure the time from the instant when the distance between
the centres of the vortices bas its least value (it is easy to see that this will be when
the line joining the centres of the vortices is parallel to the line bisecting the angle
between their directions of motion), then the square of the distance between their
centres will be expressible in the form ¢*4Bt* when ¢ is the least distance between
the centres, ¢ the time that has elapsed since the centres were this distance apart; let
v be the velocity of translation of either vortex when undisturbed, then

hence '""= coefficient of cos nf in the expression for the velocity perpendicular to the

J=—csin Le—vsin et
h= ¢ cos Le—v(l— cos €)t
Therefore
Frb e e d0? sin? Le. 22

Making these substitutions we find that the velocity perpendicular to the plane of
the vortex C D

m'a? } ) . ,

— L §1a2(0 . 2 i Lol e @ 23

= a s Jesy: (3° (34 cos €)42¢" sin® Le(1—38 cos €)t*}
m'a?a

+ COSs 02(624:1’;)?5.“111“”1”152) zAtS—I- Bt2+0t+D}

w'a'?a?

< cos 2603 (G d e 1o HA B e +CP+De+E}

where
Q e < h
A =28v"sin® Je(cos §e—5 cos Le)

B=cv?sin® Le(15 sin Le~sin ¢)

. I3 . » . . 26
C=c sin $e(15 cos Le+ cos Je) (26)
D= —1c*(5 sin 4e+ sin ¢).
=/
A’=—10v" sin* L¢(2 cos 3e+32 cos 2e47 cos e+42) )
B'=10cv® sin® Le(8 sin e—% sin 2e)
C'= —10¢*" sin® Le cos Be oo (2

D'=«—§c3 sin (14 sin e} sin 2¢)
E'=§c"sin® de(114 cos e+ 8 cos 2e) y
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The velocity along the radius vector

m'a?a
(¢ +40° sin® Je.t?)?

—

(F#84+ G+ 1+ K)

&klw

m'a?

-+ cos 6% (@4 02 s 3o )’ :{50% sin e—6cw sin Jet-+ 2 sin? Je sin €0’}
+ cos 203 5 = fm‘;_ PP+ GO+ 4K
where
F =15 sin® 1¢(2 sin $e— 14 sin Le) ,
G=cv® sin® }e(cos §e—13 cos §e) | N 1))
H=1c% sin Le(sin e+ 13 sin Le)
K=12c%(cos Se+47 cos Le) y

F'=2¢" sin? Le(sin e+ sin Je) )

G’=cv* sin? e(cos §e—21 cos Fe)
H'=4c% sin Lle(sin e+21 sin Le)
K'=1c%cos $e— cos je)

(29)

—

.J

We can now write down the differential equations giving «, and B, We shall
begin with that giving B, as the simplest, as a reference to equation (19) will show
that the vortex ring C D contributes nothing to this term, so that

B, 4 m'a’?,
dt (P +40*sin® Jet

)g(At3+Bt2+Ot+ D)

integrating and writing for brevity « instead of 41° sin® Le we find

) A C A Be? 4D B
B=3%m'a"ad | k¥ & X . D—5" 2
5@+ PR 3 (*+ Kztz) i+ N CEN2A ity ()

8D - ¢ 1
+ 5< 8 c4/c~> ((a2 + x2t2)*+ 20 sin %e)

where the arbitrary constant arising from the integration has been determined so as
to make 8,=0 when t=—o0.
Substituting for A, B, C, D their values we find

3 €%(cos Je—AE cos ge) 1 __cosde—bcosde 1
kS . 3
v 8in e (¢® 4«2 6vsinde  (*+ %"

B=23m oﬁa{

_ ¢ sin fe __(sin fe+sin fe)e  (sinfe+singe)/ € + 1 30
(+ %)t 12¢(c® + 12t%)* 6¢® \(+£%) T 2vsine/ | (30)
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This expression vanishes when t=— o0 ; it begins by being positive but soon changes
sign ; it is negative when ¢=0 and remains negative for all greater values of .
The last terms are the only ones that do not vanish when t=o0. Putting t=c0 we

find

m'a?a

(sin te+ sin Ze)

18/= —741?

m'a’?q
__ e 91
==, C0s°je

v sin te

’

Now B /a is the angle through which the plane of the vortex is turned, and since
the vortex moves at right angles to its plane this will be the angle through which the
direction of motion of the vortex ring is turned.

Since B, is negative, the part of the vortex ring C D where cos @ is positive is
tilted backwards ; now as we have taken it, cos 0 is positive for the upper part of the
vortex, hence this part of the vortex is tilted backwards, and the normal to its plane,
which is the direction in which the vortex ring moves, is bent towards pp’, the
direction of motion of the vortex ring A B through an angle whose circular measure

m'a?

ved

21
cos” &€,

Thus the deflection, other things being the same, varies inversely as the cube of
the least distance between the vortices.

Let us now consider the effect of the vortex ring C D on the vortex A B. Let us
take the perpendicular to the plane of C D as the new axis of z, the perpendicular to
this drawn upwards in the plane of the paper as the new axis of . The work we
went through before consisted in finding expressions for the velocities along the axes
of coordinates due to one vortex at a point on the other in terms of f; A, [, m, n, and
then finding the velocities perpendicular to the plane of the vortex and along its
radius vector in terms of the time by substituting from the equations

Jf=—csin te—vsin et }
— 1
h= ¢ cos se—v(1— cos €)t

l= cosecos
m=— sin 0
n= sinesin 0

velocity perpendicular to the plane of the vortex =y cos e—a sin ¢, velocity along the
radius vector =a cos € cos 8— 8 sin 0+ sin € cos 6.

Now in finding the effect of the vortex ring C D on the vortex A B, the general
expressions giving the velocities will be the same as before, as we have taken corre-
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sponding axes of coordinates. The difference in the work will come in when we
substitute for the quantities involved their expressions in terms of the time; if we
denote corresponding quantities in this case by affixing dashes to the symbols,
denoting them in the previous one, we easily find

J'=—csinletvsin et }

W =—c¢ cos Le—v(1— cos e)t
I'== cosecos @
m=—gin ¢
7' = — sin ecos 0’

velocity perpendicular to the plane of the vortex A B
=y cos etasine

velocity along the radius vector = cos € cos & — B sin §'—1y sin € cos 6.

It will be seen that we can get the expressions for the quantities denoted by the
accented letters from those for the quantities denoted by the unaccented letters by
writing 27—e instead of €, hence the value of B/ will be got by writing in the
expression for 8, (equation (30)) 27— instead of ¢, and interchanging @ and «'.

Hence the value of 8’ when t=o

mata’ o8 29 —¢ mala’ o 1
08 = — Le
ved 2 3 E

Now this being negative shows that the parts of the vortex ring A B where cos ¢/
is positive are tilted backwards, now cos ¢ is positive in the upper half of the vortex
ring A B, therefore the direction of motion of the vortex A B, which is perpendicular to
the plane of the vortex, is turned away from the direction of motion of the vortex C D
through an angle whose circular measure is ma? cos? L¢/vc?; but since in the case we are
considering a=a’, m=mn, this angle is the same as that through which the path of
the vortex C D is turned towards the path of the vortex A B. We may express the
results we have obtained by saying that the direction of motion of the vortex which
is in front when the vortices are nearest together, is bent towards the direction of
motion of the one which is behind, that the direction of motion of the latter is bent
through an equal amount in the same direction, and that the amount of this bending
is ma?® cos® Le/vcd,

Let us now consider the effect the collision has on the size of the vortices.

The equation giving the increase in radius is
Cé;%:t;he part independent of # in the expression for the velocity along the radius

vector of C D.
MDCCCLXXXII, 3vU
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A reference to equation (17) will show that the vortex ring C D itself contributes
nothing to this term, therefore

! . . . . .
Cd—%{’:the part independent of @ in the expression for the velocity due to the

vortex ring A B along the radius vector of C D.

Hence from equation (28) we have

» 12
g MO cps 4 G Hi4 K}

3
dt ~ (24497 sin? et}

If we integrate this equation, substitute for F, G, H, K their values as given in
equation (28) and determine the arbitrary constant introduced by the integration, so
that ay=0 when t=—o0, we find

— (1+ sin? Le)

¢ cos et
2v(c® 4 40* sin? %etz);i_ 65(c? +4o° sin? Le.t?)*

(¢® 4+ 44? sin? —%eﬁ)%

+

— 3’ o’
oy=5m 0t a{

+ (cos Se+ 3 cos Le)t +3 cos Le+ cos e € + 1
12¢(c*+ 42 sin? Je.t?)? 6c3 (¢ + 402 sin? Le ) T 20 gin Le

This expression vanishes when t=—o; it begins by being negative, so that the
radius of C D is diminished at first when =0, the sign of «; depends upon the value
of ¢, if € be less than 60° it is certainly positive when t=0; when = a;is positive,
and its value is

m'a*a
——————— 1 3
S o %6(3 cos Le+ cos Se)
1 o L
T 2P sin Le R

As this is positive, the vortex ring C D is bigger after the collision. The effect of
the vortex ring C D on the vortex A B can be got as we saw before by writing 2m—e
for e in the formula given above. We have thus the ultimate increase a,” in the

radius of A B given by

ma*a’ cos® L(2m—e)

o/ =%
072 Psin §(2m—e)
or since a=a’, m=m’
102
noaea
—_1 31
o= —3 ——— cos® Le
0 ® fgin Le 2

Hence the radius of the vortex ring A B is diminished by the collision. The effect
of the collision on the size of the vortices is thus to increase the radius of the one
which is in front when the vortex rings are nearest together, and decrease that of the
one in the rear by m'a®cos®le/2vcsin Le. Hence the alteration in the radius is,
cateris paribus, inversely proportional to the cube of the shortest distance between the
vortices,
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We can now find the force resultant of the impulse after collision. The impulse for
a vortex ring with a very fine core equals the strength multiplied by the area. Let o
be the small angle through which the direction of motion of the vortices is deflected ;
let 8o be the alteration in the radius of either, for the vortex ring in front 8a will be
positive, for the one in the rear it will be negative but of equal numerical value.

The resolved part of the force resultant of the impulse along the line bisecting their
original direction of motion after collision

=mm(a-+8a)?* cos <;—w\ +am(a—8a)? cos (_2€+w>
=2mma® cos Se !

the same as before collision.

The component perpendicular to the bisector of the angle between their directions
of motion
=mm(a+8a)? sin (Le—w) —mm(a—3a)? sin ((e+w)
=mm(4ada sin Le— 2wa? cos Le)

Substituting for 8¢ and o the values ma®cos® §e/2vc® sin e, and ma? cos® Le/vc?
respectively, we find that the component of the impulse perpendicular to the bisector
of the angle between the directions of motion vanishes, as it did before the collision ;
hence we see that the force resultant of the impulse is not altered by the collision, a
result which we know is true.

We pass on to consider the terms «, and B,. We know that

o

%—;z coefficient of cos 26 in the expression for the velocity along the radius vector of
the vortex ring C D.

Now the vortex ring C D itself, as we see from equation (17), contributes to the
expression for the velocity along its radius vector the term

2m/ 2a
— cos 20.° ;- log ?.Bz

The vortex ring A B contributes as we see from equation (29) the term

20,9 "0 (Fp Gt H+ K
— 008 (24 4o? sin? %e.tg)%( +G 1+ K)
say
cos 26f(t)
Thus
day _ _2m 4 20 :
dt—— a? Og P B.Z_I_f( )
Now '
B,

= the coefficient of cos 26 in the expression for the velocity perpendicular to

the plane of the vortex C D.
3 U

9]
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The vortex C D itself contributes to this coefficient the term

m 2a
3" 1o0 22
0 o
2 42 g e

The vortex A B contributes the term

1,912
3 ma~a
2

(¢ +40? sin? Le.t?)? (AT BE+ O+ D+ T)

say

F(t)
Thus

d \
(,i ;/)ng_a+E<)

Eliminating 8, we find

(§;2+Sm < r> f’(t)-—:@ log ?g F(1)
say

=x(t)
Sm? 2a\2
o log 7)

P,

dre +7’L"OC2——- ( )

or writing n? for

the equation takes the form

The solution of this differential equation is

cos nt

a,=A cos nt+B sin nt—l—**f x(t') sin nt’d¢’

sin nt [

[ x(t') cos nt’dt’

e

n

or choosing the arbitrary constants so that e, and =2 Z ® both vanish when t=—w we
find

cos nit [*

t I 7 ’
ry="" f x(t') sin nt/dt — “% ? f _X(t) cos nt'ds

-0

The complete value of x(t) is given by the equation

7.9

g a*(BF' 14+ 26"t 4+ H)
(¥ +40? sin? Jet?)*

x(t)=%

21m/a®ar® sin® Le(F't* 4+ G'63 + H'$* + K't)
(¢ +44® sin? Le?)

2m lo 2a g m'd?a (At + B+ CP+ D+ E)
2 08T, (¢ +40” sin® Je.t?)*
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Thus the coefficients of cos nt and sin n¢ in this expression for «, will involve

integrals of the type
t
cos ntdl
2P+1
(@) e

I have not succeeded in evaluating this integral ; it is evident however that the
more important part of these integrals will be produced during the time the vortices
are nearly at their minimum distance apart. During the time they are far apart they
will not contribute anything appreciable to this integral, so that soon after the vortex
rings have passed their minimum distance the equation may without sensible error be
written

cos nit _sin nt
ay=P =N _ QP
n n

where P and Q are constants and

+o

P= [ x(2) cos ng.d¢
+eo

Q:f x(2) sin nt.dt

There will be a similar expression for 8, Thus the vortex rings are thrown by the
collision into a state of vibration about their circular form.

We can find the action of two unequal vortices on each other by means of work of a
very similar character to that just given. The only difference is that instead of the
former values for f and & we must substitute the values

J=—csina—vsin e?

h=c cos a-} (v cos e—w)t

where v is the velocity of the vortex which is in front when they are nearest together,
w the velocity of the one in the rear; o is the angle between the line joining their
centres when they are nearest together, and the direction of motion of the vortex in
the rear, B is the angle between this line and the direction of motion of the vortex in
front, e is the angle between the direction of motion of the vortices; « and B8 are given
by the equations

w cos =1 cos B

atB=c

1 shall not trouble the reader with the expressions for the velocities perpendicular
to the plane of either vortex and along the radius vector, but confine myself to quoting
the most important consequences to be got from these expressions.

I find that after the collision the direction of motion of C D (the vortex which is in
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front when they are nearest together) is deflected towards the direction of motion of
the other vortex A B through an angle whose circular measure is

m'a’? cos a sin 28  2m/a’® sin® evw(v—1w cos €)

xc? «tc?

where m’, m are the strengths of the vortices A B and C D respectively, and o’ and «
their radii, « is the relative velocity of the two vortices, viz. :

(VP4 w?—2vw cos €)*

The direction of motion of A B is deflected from that of C D through an angle
whose circular measure 1s

ma? cos B sin 2o 2ma’ sin® evw(w—wv cos €)

K - e
The radius of the vortex C D is increased by

m'a?a cos e cos? B m/a*a sin® evw?

’C()S Icfl—cf}
The radius of the vortex A B is diminished by

mata’ cos B cos® e mafe sin® ev®w

Ked K3

The velocity of the vortex C D is diminished by

’ P ¢
mm” cos a cos . 2a
P ____£ a'Z lOg -
2ma xc? e
mm’a’? sin® evu? 2a

- Qrartc
The velocity of the vortex A B is increased by
mm'a? sin3 ewv? 20/

!

where e, ¢ are the radii of the cross sections of the vortices C D, A B respectively.
The kinetic energy of the vortex C D is increased by

2 pman/a*a®y cos a cos? B 2arpman’a’?a? sin® e.vPw?

3 403

KC K°C

The kinetic energy of A B is diminished by the same amount.
With the help of these results we may find the way in which two vortices affect
each other in all cases.
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AND THE ACTION OF TWO VORTICES IN A PERFECT FLUID.

Case 1.—Vortices moving in the same direction.

1. When the positions of the vortices when nearest together are as represented
in fig. 4.

The way in which their paths are deflected is indicated by the dotted lines.

The vortex C D increases in radius and energy and its velocity is decreased.

Case II.-—Vortices moving in opposite directions.

%

Fig 5.

The position of the vortices when nearest together is represented in fig. 5.

The way their paths are deflected is indicated by the dotted lines in the figure.

The vortex C D decreases in radius and energy and its velocity is increased.

The vortex A B increases in radius and energy and its velocity is decreased.

These results may be summed up in the following rule. The vortex which first
passes through the point of intersection of the directions of motion of the vortices
is deflected towards the direction of motion of the other: it increases in radius
and energy and its velocity is decreased ; the other vortex is deflected in the same
direction : it decreases in radius and energy and its velocity is increased.

(Note added March 21st, 1882.)

Sir Wirriam THOMSsON has pointed out to me that when n is very great the time
of vibration of the single vortex which for this case is (equation 23)

when [ is the wave-length 27a/n, does not agree infinitely nearly as it ought with the
value obtained by him for the rapidity of the transverse vibrations of a straight
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columnar vortex, which by formula 61 of his paper “ On the Vibrations of a Columnar
Vortex,” is

2,2 1
277/ ‘—“l';,;*—{log 2;;—]— 1159}

The results would agree approximately if I/2¢ were indefinitely great compared
with n, but it obliges us to neglect the factor log n, and thus the agreement instead
of getting better as it ought gets worse as n increases. The way I determined
A, is only suitable when nk, is small, as it is only allowable to expand cos n¢

2h2 .
as 1—7129; when 7n¢ remains small within the limits of integration. I have therefore
endeavoured to determine A, in a way which shall not be open to these objections,

With the notation of the paper since

A= 1 ( o cos nep.de
=l @t P —2apeos )t

we may easily prove that if a—p be small compared with a, that

<dAn_1 dA,Z>
of Pam A,

I

(n—1)A,_,—(n—3)A,

da da

and ’ :
a dA, _ %ﬂ
da da

> = (71 + 3)An_ (’l?/+ 1 )A”+1

If we make these substitutions we find from equations (10) and (12)

%l?— dmaB {R+5H(n—1) &, —(n+ 1)@73_1)}

d n
'_d_IBt_z %ma/an { %1 - gn}

Hence we have only to find an expression for @,

1 2 cos N
%n WS ¢ i

=7r((a—!- PP+t . </c12 + #? sin? §>

Now as x;* is very small this integral will be very large, and as the large part
arises when ¢ is small or nearly 27, we may write as the approximate value of @,

2 * cos nedd
W{(w+P)2+§2}%S o2+ 2V
(%)

_ 4 r’ cos 2ne.ded
Tty O (0 @)
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Let us consider the more general integral

* cos spde

Considered as a function of s it is easy to prove that the integral satisfies the
differential equation .
v 2p—1 du

or if u=sPw
1 dv p*
d82+ s ds <§—|-a2>=

The solution of this differential equation may be expressed in terms of BESSEL’S
functions of the first and second kinds ; we shall, however, only solve here the special
case which we require;

It is easily proved that

” cos s¢ cos s
1' o (@®+ %)’ dg= T ds{ 0 (@®+ ¢2)%d¢

Since p=0 for j ((;9% d¢ it satisfies the differential equation
0
du  1du
ds* +s ds aPu=0

This is the equation solved by Professor STokEs in his paper “ On the effect of
Internal Friction on the Motion of Pendulums,” Camb. Phil. Trans., 1850, and quoted
by Sir WirLiam TromsoN, Phil. Mag., September, 1880.

The solution is there shown to be

u-(E-]-D log ><1+ 92 +g:it+ >

+D(G SiHggSit )
where

S,=17 142714,

COS 8¢
(a2 + ¢2)%

and if as for I d¢, u=0 when s is infinite E/D is shown to be
0 .

log 8 4774 ="11593
MDCCCLXXXIT, 3 X
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so that
[t apmn (115954 log 1)1+ B
HEsAgs )
Therefore f:(aﬁ;f)% = [(115934.1 )(a;s % _|_>
H{H )
. +<”§Sl+;%§82+...>
o [z

putting s=0 we find D=—1.

Therefore , .
“cos spdp 1 a%ﬁ a'st

+<11593+10g1>< ‘2‘2‘;+ )

Now approximately
A= 1 [ “cos 2ndpdd
"ol (0 + )
a0y

hence A, is found, and if we substitute these values in the expressions for dt »

we

shall be able to find the time of vibration in any particular case.
If we suppose nk, is small, then approximately

_ 1 2 o1 .
Aol ol gt 1100841
‘e . . : 1
or if we neglect 1.23 in comparison with 2 log 20k,

Now "
—=tmaf, (R, +3} (n— 1), ., — (1 1)@,y

ﬁg&%ma%{%—%}
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Substituting we find

o 4015 log 2y (12— 1)(1+1) og -+1— (n—1) g n—1)

m
== 27m2fB” say

d n n
% 2m o; n® log 2nk, — log 2k,)
27mgga,, say

Thus

a*B,
di <27ra2>fg’8”—0
or the time of vibration

/a)e2

Now if n be not very large
Jf=n?log 2k,= —n?log %
g=(n*—1) log 2k, = —(n*—1) log %
and the time of vibration
_271-//——7“/%2—1 log—
If n be large
JS=n?log 2k,+n? log n=—n?log nﬁe
a
g=n?log 2nk,= —n? log —
and the time of vibration
2
=2 / a;—egnz log 7-:)—:—
or if [ be the wave length =2wa/n ‘

/2'71-%(32

l
=27
/

log —

2 © 2me

which agrees approximately with Sir WiLLiam THOMSON’S result.
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